- #1
Extremist223
- 7
- 0
Homework Statement
The wheel of fortune wheel, whose radius is 3.00m, has 20 different numbers, at equal intervals, for a contestant to land on. The second contestant can spin the wheel, and wishes to land on the $1.00. The wheel starts off 4 positions away from the $1.00. Assuming a deceleration of 0.400 rad/s2, what must be the minimum tangential velocity for the contestant to reach the $1.00, if they pull the wheel down?
Homework Equations
2pi rads is a full circle
w^2 = wo^2 + 2(alpha)(theta)
alpha= angular acceleration
theta is distance in radians travelled
w^2 is final angular velocity squared
wo^2 is initial angular velocity squared
Tangential Velocity = Radius x w
The Attempt at a Solution
2pi/20= 0.314 rads per interval
the goal is 4 intervals away from the start therefore 4x0.314= 1.257 rads travelled.
it wants to land 4 intervals away from the start so the final angular velocity = 0 rad/s
therefore w^2 = wo^2 + 2 (alpha)(theta)
0 = wo^2 + 2(-.4rad/s^2)(1.257)
-wo^2= -1.0056rad/s
wo^2 = 1.0056rad/s
wo= 1.00265rad/s
so at this point i took vt= rw vt= 3m x 1.00265rad/s vt = 3.008m/s
I'm getting the answer wrong and I don't know why. Can anyone help me please?