- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Let $a,\,b,\,c$ and $d$ be real numbers that satisfy
$(a+b)(c+d)=13,\\(a+c)(b+d)=24,\\(a+d)(b+c)=25.$
Find the smallest possible vale of $a^2+b^2+c^2+d^2$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $a,\,b,\,c$ and $d$ be real numbers that satisfy
$(a+b)(c+d)=13,\\(a+c)(b+d)=24,\\(a+d)(b+c)=25.$
Find the smallest possible vale of $a^2+b^2+c^2+d^2$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!