- #1
ultima9999
- 43
- 0
Yeah, I tried doing this question and just wanted to check if I was correct.
Write down the derivative of [tex]\arccos (4x^2)[/tex] and state the domain for which the derivative applies.
[tex]\mbox{let}\ y = \arccos (4x^2), x\ \epsilon\ [-1, 1], y\ \epsilon\ [0, \pi][/tex]
[tex]\Leftrightarrow x = \frac{\sqrt{\cos y}}{2}[/tex]
[tex]\begin{align*}
\frac{d}{dx} x = \frac{d}{dx} \frac{\sqrt{\cos y}}{2} \\
1 = \frac{-\sin y}{4 \sqrt{\cos y}} \cdot \frac{dy}{dx} \\
\frac{dy}{dx} = \frac{4 \sqrt{\cos y}}{-\sin y}
\end{align*}[/tex]
[tex]\cos^2 y + \sin^2 y = 1[/tex]
[tex]\sin y = \sqrt{1 - \cos^2 y}, \mbox{because}\ y\ \epsilon\ [0, \pi]\ \mbox{so}\ \sin y \geq 0[/tex]
[tex]\therefore \frac{dy}{dx} = \frac{4\sqrt{\cos y}}{-\sqrt{1 - \cos^2 y}}[/tex]
Write down the derivative of [tex]\arccos (4x^2)[/tex] and state the domain for which the derivative applies.
[tex]\mbox{let}\ y = \arccos (4x^2), x\ \epsilon\ [-1, 1], y\ \epsilon\ [0, \pi][/tex]
[tex]\Leftrightarrow x = \frac{\sqrt{\cos y}}{2}[/tex]
[tex]\begin{align*}
\frac{d}{dx} x = \frac{d}{dx} \frac{\sqrt{\cos y}}{2} \\
1 = \frac{-\sin y}{4 \sqrt{\cos y}} \cdot \frac{dy}{dx} \\
\frac{dy}{dx} = \frac{4 \sqrt{\cos y}}{-\sin y}
\end{align*}[/tex]
[tex]\cos^2 y + \sin^2 y = 1[/tex]
[tex]\sin y = \sqrt{1 - \cos^2 y}, \mbox{because}\ y\ \epsilon\ [0, \pi]\ \mbox{so}\ \sin y \geq 0[/tex]
[tex]\therefore \frac{dy}{dx} = \frac{4\sqrt{\cos y}}{-\sqrt{1 - \cos^2 y}}[/tex]
Last edited: