- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
We consider the following problem
$$y'(x)=-sign y, y(0)=0$$
where $sign y$ is defined as follows:
$$sign y=\left\{\begin{matrix}
1 & , y \geq 0\\
-1 &,y<0
\end{matrix}\right.$$The consecutive approaches are:$$\phi_m(x)=\left\{\begin{matrix}
-x &, m=1,3,5,7, \dots \\
|x| &, m=2,4,6,8,\dots
\end{matrix}\right.$$
Find the mistake at the following syllogism:We consider the subsequence $\phi_k(x), k=2m+1, m=0,1,2,3, \dots$ and we take the limit , obviously
$$\lim_{k \to +\infty} \phi_k(x)=\lim_{k \to +\infty} (-x)=-x=\phi(x)$$Consequently $\phi(x)=-x$ is the solution of the problem in the whole $\mathbb{R}$.We have $\phi_k(x)=y_0+\int_{x_0}^x f(\xi, \phi_{k-1}(\xi)) d \xi$Can we not take the limit since $\phi_k$ and $\phi_{k-1}$ don't have the same value?In my notes it stands the following:$$1,2, \frac{1}{2}, 2, \frac{1}{3},2, \frac{1}{4},2, \dots \\ \frac{1}{n} \to 0$$
How do we find these values?
We consider the following problem
$$y'(x)=-sign y, y(0)=0$$
where $sign y$ is defined as follows:
$$sign y=\left\{\begin{matrix}
1 & , y \geq 0\\
-1 &,y<0
\end{matrix}\right.$$The consecutive approaches are:$$\phi_m(x)=\left\{\begin{matrix}
-x &, m=1,3,5,7, \dots \\
|x| &, m=2,4,6,8,\dots
\end{matrix}\right.$$
Find the mistake at the following syllogism:We consider the subsequence $\phi_k(x), k=2m+1, m=0,1,2,3, \dots$ and we take the limit , obviously
$$\lim_{k \to +\infty} \phi_k(x)=\lim_{k \to +\infty} (-x)=-x=\phi(x)$$Consequently $\phi(x)=-x$ is the solution of the problem in the whole $\mathbb{R}$.We have $\phi_k(x)=y_0+\int_{x_0}^x f(\xi, \phi_{k-1}(\xi)) d \xi$Can we not take the limit since $\phi_k$ and $\phi_{k-1}$ don't have the same value?In my notes it stands the following:$$1,2, \frac{1}{2}, 2, \frac{1}{3},2, \frac{1}{4},2, \dots \\ \frac{1}{n} \to 0$$
How do we find these values?