- #1
Ken Gallock
- 30
- 0
Hi everyone.
There is the ##2\times 2## matrix ##B##
$$B=
\left[
\begin{array}{cc}
B_{11} &B_{12} \\
B_{21}&B_{22}
\end{array}
\right],~B_{ij}\in \mathbb{C}
$$
with property
$$\vert B_{11}\vert^2 + \vert B_{12}\vert^2=1,$$
$$\vert B_{21}\vert^2 + \vert B_{22}\vert^2=1,$$
$$B_{11}B_{21}^{\ast}+B_{12}B_{22}^{\ast}=0.$$
According to one of the texts, it is said that this matrix can be decomposed like
$$B=e^{i\frac{\Lambda}{2}}
\left[
\begin{array}{cc}
e^{i\frac{\Phi}{2}} & 0 \\
0 & e^{-i\frac{\Phi}{2}}
\end{array}
\right]
\left[
\begin{array}{cc}
\cos (\Theta/2) & \sin (\Theta/2) \\
-\sin (\Theta/2) & \cos (\Theta/2)
\end{array}
\right]
\left[
\begin{array}{cc}
e^{i\frac{\Psi}{2}} & 0 \\
0 & e^{-i\frac{\Psi}{2}}
\end{array}
\right]
$$
$$\Lambda, \Phi, \Theta, \Psi \in \mathbb{R}$$.
I don't know what kind of decomposition this is.
Could someone tell me the name of this decomposition?
Thanks.
There is the ##2\times 2## matrix ##B##
$$B=
\left[
\begin{array}{cc}
B_{11} &B_{12} \\
B_{21}&B_{22}
\end{array}
\right],~B_{ij}\in \mathbb{C}
$$
with property
$$\vert B_{11}\vert^2 + \vert B_{12}\vert^2=1,$$
$$\vert B_{21}\vert^2 + \vert B_{22}\vert^2=1,$$
$$B_{11}B_{21}^{\ast}+B_{12}B_{22}^{\ast}=0.$$
According to one of the texts, it is said that this matrix can be decomposed like
$$B=e^{i\frac{\Lambda}{2}}
\left[
\begin{array}{cc}
e^{i\frac{\Phi}{2}} & 0 \\
0 & e^{-i\frac{\Phi}{2}}
\end{array}
\right]
\left[
\begin{array}{cc}
\cos (\Theta/2) & \sin (\Theta/2) \\
-\sin (\Theta/2) & \cos (\Theta/2)
\end{array}
\right]
\left[
\begin{array}{cc}
e^{i\frac{\Psi}{2}} & 0 \\
0 & e^{-i\frac{\Psi}{2}}
\end{array}
\right]
$$
$$\Lambda, \Phi, \Theta, \Psi \in \mathbb{R}$$.
I don't know what kind of decomposition this is.
Could someone tell me the name of this decomposition?
Thanks.