- #1
physgirl
- 99
- 0
Homework Statement
Given that the antisymmetric spin function for a 2 electron system is N[a1b2-a2b1], find the normalization constant N. (and by a and b I mean the alpha and beta spin states and by 1 and 2, I mean the labels on the two electrons...
Homework Equations
Normalization: 1=integral over all relevant space of (wavefunction*wavefunction)
The Attempt at a Solution
So I tried to square the spin function given, set it equal to 1, and solve for N. However, as the squared value of [a1b2-a2b1]... or what I THINK is the squared value of that, I kept on getting zero... what am I doing wrong in doing:
square of spin function=(N[a1b2-a2b1])^2
=(N^2)<a1b2-a2b1|a1b2-a2b1>
=(N^2)[<a1|a1><b2|b2>-<a1|a2><b2|b1>-<a2|a1><b1|b2>+<a2|a2><b1|b1>]
and because any sort of <a|a> is 1 and so is <b|b>, all those braket stuff are equal to 1, which overall makes the equation 0... I'm confused :(