- #1
Neothilic
- 21
- 5
- TL;DR Summary
- What is the solution to the nth derivative of this characteristic function?
How would I find the ##nth## derivative of this? As as derivative of ##-|t|## is ##-\frac{t}{|t|}##.
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0} ##
This is the characteristic function of the Cauchy Distribution. So for when ##t=0##, ##e^{-|t|}=1##; when ##t<0##, ##e^{-|t|}=e^{t}##; when ##t>0##, ##e^{-|t|}=e^{-t}##. So I could just substitute the value for when ##t=0##. Correct?
As;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0} = i^{-n}\frac{d^{n}}{dt^n} 1##
Therefore;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0}=i^{-n}0##
So;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0}=0##
Therefore, the Cauchy Distribution has no moments.
I know the result is true, is my solution correct though?
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0} ##
This is the characteristic function of the Cauchy Distribution. So for when ##t=0##, ##e^{-|t|}=1##; when ##t<0##, ##e^{-|t|}=e^{t}##; when ##t>0##, ##e^{-|t|}=e^{-t}##. So I could just substitute the value for when ##t=0##. Correct?
As;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0} = i^{-n}\frac{d^{n}}{dt^n} 1##
Therefore;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0}=i^{-n}0##
So;
## \langle X^{n} \rangle = i^{-n}\frac{d^{n}}{dt^n} e^{-|t|} \vert_{t=0}=0##
Therefore, the Cauchy Distribution has no moments.
I know the result is true, is my solution correct though?
Last edited: