- #1
Amad27
- 412
- 1
Hello,
I am working towards an extremely difficult real analysis problem. The statement is as follows:
Prove that if $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$ then $\lim_{x \to a} \max(f(x), g(x)) = \max(l, m)$ Some definitions:
$$\max(f, g)(x) = \frac{f + g + |g - f|}{2}$$
$$\max(l, m) = \frac{l + m + |m - l|}{2}$$
$$\lim_{{x}\to{a}} \max(f, g)(x) = \lim_{{x}\to{a}} \frac{f + g + |g - f|}{2}$$
$$= \frac{l + m}{2} + \lim_{{x}\to{a}} \frac{|g - f|}{2}$$
Somehow, the objective is to prove (using epsilon/delta) that
$$\lim_{x \to a} |g - f| = |m - l|$$
Let $H(x) = |g(x) - f(x)|$
$$\lim_{{x}\to{a}} H(x) = \lim_{{x}\to{a}} |g(x) - f(x)|$$
So prove that
$\displaystyle \left| |g(x) - f(x)| - Q \right| < \epsilon$ such that $|x - a| < \delta'$
And that $Q = |M - L|$
Can someone give me a hint, not the full solution?
I am working towards an extremely difficult real analysis problem. The statement is as follows:
Prove that if $\lim_{x \to a} f(x) = l$ and $\lim_{x \to a} g(x) = m$ then $\lim_{x \to a} \max(f(x), g(x)) = \max(l, m)$ Some definitions:
$$\max(f, g)(x) = \frac{f + g + |g - f|}{2}$$
$$\max(l, m) = \frac{l + m + |m - l|}{2}$$
$$\lim_{{x}\to{a}} \max(f, g)(x) = \lim_{{x}\to{a}} \frac{f + g + |g - f|}{2}$$
$$= \frac{l + m}{2} + \lim_{{x}\to{a}} \frac{|g - f|}{2}$$
Somehow, the objective is to prove (using epsilon/delta) that
$$\lim_{x \to a} |g - f| = |m - l|$$
Let $H(x) = |g(x) - f(x)|$
$$\lim_{{x}\to{a}} H(x) = \lim_{{x}\to{a}} |g(x) - f(x)|$$
So prove that
$\displaystyle \left| |g(x) - f(x)| - Q \right| < \epsilon$ such that $|x - a| < \delta'$
And that $Q = |M - L|$
Can someone give me a hint, not the full solution?