- #1
Dethrone
- 717
- 0
When building a tall support, often the self weight of the support must be considered. For an optimal support, the volume of material, and hence the cost, will be a minimum. If the maximum allowable stress in concrete is 15 MPa, determine the optimal geometry of a column 100 metres tall made of concrete to support a mass of 1250 tonnes at its top. Hint: think of the shape of the CN tower
There's no textbook for this course, so we're expected to use common sense to answer these questions...
$$\sigma = \frac{F}{A}=\frac{\pi D^2/4\cdot H\cdot W+1250\cdot 10^3 \cdot 9.81}{\pi D^2/4} $$
W=25 Kn/m, and putting all the information in, I get diameter is 1.1m. Is that right, and I was told that the radius is different at the top, not sure what to do.
There's no textbook for this course, so we're expected to use common sense to answer these questions...
$$\sigma = \frac{F}{A}=\frac{\pi D^2/4\cdot H\cdot W+1250\cdot 10^3 \cdot 9.81}{\pi D^2/4} $$
W=25 Kn/m, and putting all the information in, I get diameter is 1.1m. Is that right, and I was told that the radius is different at the top, not sure what to do.
Last edited: