- #1
zketrouble
- 47
- 0
so I just introduced myself to the concept of integration by parts a few days ago, and today for practice I decided to try to redo one of the examples given in a youtube video without the assistance of youtube. That problem was int. (x^2)(e^x) dx, for which the answer is (e^x)(x^2 -2x + 2). So then I tried to integrate (x^3)(e^x), (x^4)(e^x), and so on, a drew the results in a table:
y = int. (x^n)(e^x)
n=0; y = e^x
n=1; y = e^x(x-1)
n=2; y = e^x(x^2 - 2x + 2)
n=3; y = e^x(x^3 - 3x^2 + 6x -6)
n=4; y = e^x(x^4 - 4x^3 + 12x^2 - 24x + 24)
n=5; y = e^x(x^5 - 5x^4 + 20x^3 - 60x^2 + 120x -120)
I noticed a pattern, and I'm curious as to how I would formally prove this pattern:
(x^n)(e^x) dx =
(e^x){x^n - nx^(n-1) + n(n-1)x^(n-2) - n(n-1)(n-2)x^(n-3) + n(n-1)(n-2)(n-3)x^(n-4)...-+-+-+...}
It is very likely that the procedures necessary to prove this are way beyond my current calculus skills, but I'm curious anyway to see what the folks here at PF can come up with to prove/disprove my assumption that the above statement is true.
y = int. (x^n)(e^x)
n=0; y = e^x
n=1; y = e^x(x-1)
n=2; y = e^x(x^2 - 2x + 2)
n=3; y = e^x(x^3 - 3x^2 + 6x -6)
n=4; y = e^x(x^4 - 4x^3 + 12x^2 - 24x + 24)
n=5; y = e^x(x^5 - 5x^4 + 20x^3 - 60x^2 + 120x -120)
I noticed a pattern, and I'm curious as to how I would formally prove this pattern:
(x^n)(e^x) dx =
(e^x){x^n - nx^(n-1) + n(n-1)x^(n-2) - n(n-1)(n-2)x^(n-3) + n(n-1)(n-2)(n-3)x^(n-4)...-+-+-+...}
It is very likely that the procedures necessary to prove this are way beyond my current calculus skills, but I'm curious anyway to see what the folks here at PF can come up with to prove/disprove my assumption that the above statement is true.
Last edited: