- #1
kudoushinichi88
- 129
- 2
I am asking this question on behalf of a forummer from Gendou.com's Physics Board... Sorry if a similar question has been posted before...
------------------------------------------------------------------------------------
Here is a mechanics question which totally stumped me:
A car together with its passengers has a combined mass of 2000kg. Its width, wheel-to-wheel is 2m and its center of gravity is 1m from the ground and midway between the wheels. It enters a roundabout which has a diameter of 10m.
Calculate the speed below which it must travel to ensure that it will not flip over about the outer wheels. Is the car were to travel at half this max speed, what is the combined frictional forces on the wheels?
Here are a couple of things that I'm quite confused about if you don't want to bother with the calculations:
a) what causes the car to flip in the first place?
b) in this case, if centripetal force is the resultant force of circular motion, what causes it in the first place?
c) does the difference of normal force on both sides of the car cause the car to overturn?
-------------------------------------------------------------------------------------
Now, I understand that when the car accelerates around the roundabout, the center of gravity of the car moves away from the center of the roundabout due to it's tendency to move in a straight line. And when the center of gravity goes over the outer wheels, a torque is produced causing the car to flip.
But I don't know how to describe this mathematically. What puzzles me the most is, how do you explain mathematically what exactly causes the center of mass to move?
------------------------------------------------------------------------------------
Here is a mechanics question which totally stumped me:
A car together with its passengers has a combined mass of 2000kg. Its width, wheel-to-wheel is 2m and its center of gravity is 1m from the ground and midway between the wheels. It enters a roundabout which has a diameter of 10m.
Calculate the speed below which it must travel to ensure that it will not flip over about the outer wheels. Is the car were to travel at half this max speed, what is the combined frictional forces on the wheels?
Here are a couple of things that I'm quite confused about if you don't want to bother with the calculations:
a) what causes the car to flip in the first place?
b) in this case, if centripetal force is the resultant force of circular motion, what causes it in the first place?
c) does the difference of normal force on both sides of the car cause the car to overturn?
-------------------------------------------------------------------------------------
Now, I understand that when the car accelerates around the roundabout, the center of gravity of the car moves away from the center of the roundabout due to it's tendency to move in a straight line. And when the center of gravity goes over the outer wheels, a torque is produced causing the car to flip.
But I don't know how to describe this mathematically. What puzzles me the most is, how do you explain mathematically what exactly causes the center of mass to move?