- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 244
Here's this week's problem!
__________________
Let $u$ be an $H^1(\Bbb R^d)$-solution of the semi-linear PDE
$$-\Delta u + au = b|u|^{\alpha}u\quad (a > 0,\, \alpha > 0,\, b\in \Bbb R)$$
Derive the Pohozaev identity
$$(d - 2)\int_{\Bbb R^d} \lvert \nabla_xu\rvert^2\, dx + da\int_{\Bbb R^d} \lvert u\rvert^2\, dx = \frac{2bd}{\alpha + 2}\int_{\Bbb R^d} \lvert u\rvert^{\alpha + 2}$$
___________________Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
__________________
Let $u$ be an $H^1(\Bbb R^d)$-solution of the semi-linear PDE
$$-\Delta u + au = b|u|^{\alpha}u\quad (a > 0,\, \alpha > 0,\, b\in \Bbb R)$$
Derive the Pohozaev identity
$$(d - 2)\int_{\Bbb R^d} \lvert \nabla_xu\rvert^2\, dx + da\int_{\Bbb R^d} \lvert u\rvert^2\, dx = \frac{2bd}{\alpha + 2}\int_{\Bbb R^d} \lvert u\rvert^{\alpha + 2}$$
___________________Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!