- #1
AndrewGRQTF
- 27
- 2
Take for example dimensional regularization. Is it correct to say that the main point of the dimensional regularization of divergent momentum integrals in QFT is to express the divergence of these integrals in such a way that they can be absorbed into the counterterms? Can someone tell me what the definition of the verb "regularize" is?
Also, is it true that the conditions required to be able to use the LSZ formula, like the pole of the exact propagator being at the physical mass and it having residue one, take care of the divergences, so that renormalization is not completely artificial? Can one argue the point of view that counterterms are introduced to satisfy the LSZ conditions, and that they are not meant to cancel any divergences, but end up doing so miraculously?
Also, is it true that the conditions required to be able to use the LSZ formula, like the pole of the exact propagator being at the physical mass and it having residue one, take care of the divergences, so that renormalization is not completely artificial? Can one argue the point of view that counterterms are introduced to satisfy the LSZ conditions, and that they are not meant to cancel any divergences, but end up doing so miraculously?