- #1
Ackbach
Gold Member
MHB
- 4,155
- 93
Here is this week's POTW:
-----
You have coins $C_1,C_2,\ldots,C_n$. For each $k$, $C_k$ is biased so that, when tossed, it has probability $\displaystyle \frac{1}{2k+1}$ of falling heads. If the $n$ coins are tossed, what is the probability that the number of heads is odd? Express the answer as a rational function of $n$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
You have coins $C_1,C_2,\ldots,C_n$. For each $k$, $C_k$ is biased so that, when tossed, it has probability $\displaystyle \frac{1}{2k+1}$ of falling heads. If the $n$ coins are tossed, what is the probability that the number of heads is odd? Express the answer as a rational function of $n$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!