- #1
Yagoda
- 46
- 0
Homework Statement
Toss a fair coin independently 100 times. Let X > 0 be the number of times the coin must be tossed until the number of observed heads equals the number of observed tails. (And let X=100 if this never happens). Find the probability that X=8.
Homework Equations
The Attempt at a Solution
In order for X to be 8 we need there to be exactly 4 heads and 4 tails after the 8th flip. But we also need there to not be equal heads and tails at any point before this, which could occur after the 2nd, 4th and 6th flips. Thus we cannot have sequences beginning with TH, HT, HHTT, TTHH, etc. I tried enumerating all of these types of sequences but I couldn't come up with a systematic way of figuring them out.
This problem is from an old exam and in the solution that came with it the answer given is simply [itex]\frac{1}{2}\times\frac12\times\frac12\times\frac14 + \frac12 \times \frac14 \times \frac{1}{16} = \frac{5}{128},[/itex] with no other explanation provided. I can't really make sense of these numbers or figure out how they got it. Am I just really overthinking it?