- #36
viraltux
- 250
- 0
haruspex said:In that case I select a binomial distribution. This means I can rephrase it as "each ball is chosen independently with probability p".
The probability that a given ball is selected by all M is then pM.
The number of balls selected by all is binomial with parameter pM.
However, I have violated the statement that k must be 1 to K. I've made it 0 to K. Is that alright?
The last time S_David explained the problem it seemed he is worried about "the cardinality of the intersection" which I think hardly relates to the "The number of balls selected by all"
Rephrasing the problem this way turns it into a different one. When a problem states thing like "Each person will pull a number of balls" the most common approach is to assume every number is equally likely. It would be like asking people to choose a number from 0 to K, if we do not consider things like psychological biases (like people choosing their favorite number) the most reasonable is to assume every number is equally likely. The moment you assign a probability p to a ball to be chosen then it implies things like "it is more likely people choose 4 balls than 5", which I see this nowhere in the problem. Not to mention that with this approach you need to estimate p which is not given by the problem.
Also, in any case, when a given ball is selected by all M is then pM, but the probability that all M select the same ball is pM-1... unless the problem has changed again which wouldn't be surprising at this point.
S_David said:Ok, let me elaborate more: We have M person and K distinct balls numbered from 1 to K. Each person will pull a number of balls, i.e.: the number of picked balls is not known a priori. Then he will return the balls to the next person (after taking the balls' numbers by a reliable observer) who will do the same thing. At the end we will find the intersection between the balls picked by all persons. I need to find the probability that the cardinality of this intersection is m, where m is an integer between 1 and K.
I hope it is more clear now.
Thanks
I don't think there is information missing in this problem, the key difficulty lays in the "cardinality of this intersection" part. If we had the distribution for the intersection of cardinalities of M subsets within a set of cardinality K the problem is done.
I did calculate such distribution of m for any given cardinalities C1 and C2 considering M=2 and is already huge, and for M>2 it only gets worse
I think would I go Montecarlo on this one.