MHB What is the probability that he is having pizza?

  • Thread starter Thread starter navi
  • Start date Start date
  • Tags Tags
    Probability
AI Thread Summary
The discussion centers on calculating the probability that Homer is having pizza given that he is watching Monday Night Football. The provided probabilities are 0.6 for watching football, 0.45 for having pizza, and 0.25 for doing both. A participant expresses confusion about why the probability of doing both is not simply the product of the two individual probabilities. Clarification is offered that the 0.25 is a given value, not derived from multiplying the other probabilities, and a visual aid with overlapping circles is suggested to better understand the relationships. The correct probability that Homer is having pizza while watching football is ultimately calculated as 5/12.
navi
Messages
12
Reaction score
0
Hi! So I am confused with this problem:

Homer watches Monday Night Football with a probability .6, he has pizza on Monday night with a probability .45, and he does both with probability .25. When you call him on Monday night, you learn that he is watching Monday Night Football. What is the probability that he is having pizza?

The answer is 5/12, I don't understand why :(

First of all, I do not understand how the probability of doing both is .25. Should it not be .6*.45? So, the formula should be for Probability of having pizza given that he is watching MNF, which would be: (.6*.45)/(.6*.45)+(.45*.4)... but I am obviously doing something wrong... :(
 
Mathematics news on Phys.org
navi said:
Hi! So I am confused with this problem:

Homer watches Monday Night Football with a probability .6, he has pizza on Monday night with a probability .45, and he does both with probability .25. When you call him on Monday night, you learn that he is watching Monday Night Football. What is the probability that he is having pizza?

The answer is 5/12, I don't understand why :(

First of all, I do not understand how the probability of doing both is .25. Should it not be .6*.45? So, the formula should be for Probability of having pizza given that he is watching MNF, which would be: (.6*.45)/(.6*.45)+(.45*.4)... but I am obviously doing something wrong... :(

.25 is not calculated from .6 and .45. It is given.

Draw two separate circles.

Label one "p( Football ) = 0.60"
Label the other "p( Pizza ) = 0.45"
Now, slide them together until they overlap.
--- Label the overlap "p(Both) = 0.25".
--- Put 0.60 - 0.25 = 0.35 in the football lune
--- Put 0.45 - 0.25 = 0.20 in the pizza lune

If you have the picture right, you should be able to answer the questions.

Are there more weird icons that can be developed from simple words? ( P i z z a ) gives (Pizza).
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top