- #1
Gza
- 449
- 0
Hey guys i was working on an algorithm for one of my CS classes that included working out the Fourier series for the function f(x) = (sin(x))^2. it's been a few years since I've done anything like this, so I did some googling to refresh my memory of how to determine the Fourier coefficients, and after some integrals and calculations, came up with:
f(x) = (1/2) + (1/2)cos(2x) + (1/2)sin(2x)
I graphed this along with f(x) = (sin(x))^2 and it looked different from it. I was wondering if someone can give me a correct answer to compare with what i came up with, or help with giving me a rough walkthru of the process. Thanks again.
f(x) = (1/2) + (1/2)cos(2x) + (1/2)sin(2x)
I graphed this along with f(x) = (sin(x))^2 and it looked different from it. I was wondering if someone can give me a correct answer to compare with what i came up with, or help with giving me a rough walkthru of the process. Thanks again.