- #1
karush
Gold Member
MHB
- 3,269
- 5
Find the centroid.
Sliced Solid Cylinder
bounded by $x^2+y^2=196$,$z=0$,$y+z=14$
so $r=14$
and $r\sin\theta +z=14$
so $z=14-\sin\theta$
$\displaystyle m=\iiint_\limits{D}{}^{} Rv = \int_{0}^{24} \int_{0}^{14} \int_{0}^{14-r\sin\theta}$
$\displaystyle=\int_{0}^{24}\int_{0}^{14}(14r-r^2\sin\theta) \,dr \,d\theta$
$\displaystyle=\int_{0}^{24} (1372-392\sin\theta)d\theta= 2744\pi$
?
the answer is $\displaystyle=\left[0,-\frac{7}{2},\frac{35}{4}\right]$
Sliced Solid Cylinder
bounded by $x^2+y^2=196$,$z=0$,$y+z=14$
so $r=14$
and $r\sin\theta +z=14$
so $z=14-\sin\theta$
$\displaystyle m=\iiint_\limits{D}{}^{} Rv = \int_{0}^{24} \int_{0}^{14} \int_{0}^{14-r\sin\theta}$
$\displaystyle=\int_{0}^{24}\int_{0}^{14}(14r-r^2\sin\theta) \,dr \,d\theta$
$\displaystyle=\int_{0}^{24} (1372-392\sin\theta)d\theta= 2744\pi$
?
the answer is $\displaystyle=\left[0,-\frac{7}{2},\frac{35}{4}\right]$
Last edited: