- #1
TranscendArcu
- 285
- 0
Homework Statement
http://img856.imageshack.us/img856/5586/screenshot20120121at328.png
The Attempt at a Solution
I propose the vectors [itex]x,x^2,x^3[/itex] form a basis of V. To test for linear independence, let [itex]0 = a_1 x + a_2 x^2 + a_3 x^3[/itex], where [itex]a \in R[/itex]. A polynomial is 0 iff all of its coefficients are zero. Thus, linear independence is proved. That is, [itex]a_1 = a_2 = a_3 = 0[/itex]
To prove that [itex]x,x^2,x^3[/itex] spans V, let [itex]p(x) = b_1 x + b_2 x^2 + b_3 x^3 \in V[/itex], where [itex]b \in R[/itex]. We need numbers [itex]c_1,c_2,c_3[/itex] such that [itex]b_1 x + b_2 x^2 + b_3 x^3 = c_1 x + c_2 x^2 + c_3 x^3[/itex]. This implies [itex]b_1 = c_1[/itex], [itex]b_2 = c_2[/itex], [itex]b_3 = c_3[/itex]. Thus, [itex]p(x) = c_1 x + c_2 x^2 + c_3 x^3[/itex] and clearly [itex]p(0) = c_1 (0) + c_2 (0) + c_3 (0) = 0[/itex]. Therefore, [itex]x,x^2,x^3[/itex] span V.
Am I doing this right?
Last edited by a moderator: