- #1
mathboy
- 182
- 0
Homework Statement
Let {W_1,W_2,W_3,...} be a collection of proper subspaces of V (i.e. W_i not=V) such that W_i is a subset of W_(i+1) for all i. Prove that U(W_i) (i from 1 to infinity) is a proper subspace of V
The Attempt at a Solution
I've already proven that U(W_i) is a subspace of V, so I only need to show that U(W_i) not= V. I've used induction but that only proves that W_i (i from 1 to n) is a proper subset of V, not U(W_i) (i from 1 to infinity). How do I show that U(W_i) (i from 1 to infinity) is a proper subset of V? I'm familiar with infinite set theory stuff (axiom of choice, etc...), but I don't know how to use it here. I could not use dimensions to help me because infinity minus a number is still infinity. Should I use the complement subsets of W_i?
Last edited: