- #1
phoenix95
Gold Member
- 81
- 22
Hello there,
I had some questions regarding k-forms. I was looking in the wiki page of differential forms(https://en.wikipedia.org/wiki/Differential_form) and noticed that it was was introduced to perform integration independent of the co-ordinates. I am not clear how? Is this because given a function(say f) on the manifold, one can use the co-ordinate chart(Φ:M→ℝm) to define the same function in the euclidean space(as f(Φ-1)) and integrate over there?
I had some questions regarding k-forms. I was looking in the wiki page of differential forms(https://en.wikipedia.org/wiki/Differential_form) and noticed that it was was introduced to perform integration independent of the co-ordinates. I am not clear how? Is this because given a function(say f) on the manifold, one can use the co-ordinate chart(Φ:M→ℝm) to define the same function in the euclidean space(as f(Φ-1)) and integrate over there?