- #1
alejandrito29
- 150
- 0
at the serie [tex] \sum_0^{\infty} a_n (x - c)^n [/tex], the radius of convergency is:
.
[tex]R= \lim_{n \to \infty } |\frac{a_n}{a_{n+1}}|[/tex]
My problem is : Find the radius of convergency when:
[tex] \sum_0^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1} [/tex]
i don't understand mainly who is [tex]a_n[/tex] .
The answer is [tex]R \to \infty[/tex]
.
[tex]R= \lim_{n \to \infty } |\frac{a_n}{a_{n+1}}|[/tex]
My problem is : Find the radius of convergency when:
[tex] \sum_0^{\infty} \frac{(-1)^n}{(2n+1)!} \cdot x^{2n+1} [/tex]
i don't understand mainly who is [tex]a_n[/tex] .
The answer is [tex]R \to \infty[/tex]