What is the ratio of complex numbers in the form of a question?

In summary, the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ can be simplified to $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$ by using the identities $\sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}$ and $\cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}$ and simplifying the expression. This can be a useful technique to remember for exams.
  • #1
Guest2
193
0
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.
 
Mathematics news on Phys.org
  • #2
See how far you can get using \(\displaystyle \sin(x)=\dfrac{e^{ix}-e^{-ix}}{2i}\) and \(\displaystyle \cos(x)=\dfrac{e^{ix}+e^{-ix}}{2}\).
 
  • #3
Guest said:
What's the ratio $\displaystyle \frac{e^{i\sqrt{x}}-1}{e^{i\sqrt{x}}+1}$ equal to? I can't work it out to anything I recognize. :confused:

The answer is $\displaystyle i\tan(\frac{1}{2}\sqrt{x})$. I suppose I could work backwards from the answer, but I won't have the answer in the exam.

$\displaystyle \begin{align*} \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}}-1}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} &= \frac{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1 - 2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{\mathrm{e}^{\mathrm{i}\,\sqrt{x}} + 1} \\ &= 1 - \frac{2}{1 + \cos{ \left( \sqrt{x} \right) } + \mathrm{i} \sin{\left( \sqrt{x} \right) }} \\ &= 1 - \frac{2\,\left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] }{\left[ 1 + \cos{\left( \sqrt{x} \right) } + \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] \left[ 1 + \cos{ \left( \sqrt{x} \right) } - \mathrm{i}\sin{ \left( \sqrt{x} \right) } \right] } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right)
} - 2\,\mathrm{i} \sin{ \left( \sqrt{x} \right) } }{ \left[ 1 + \cos{ \left( \sqrt{x} \right) } \right] ^2 + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{1 + 2\cos{ \left( \sqrt{x} \right) } + \cos^2{ \left( \sqrt{x} \right) } + \sin^2{ \left( \sqrt{x} \right) } } \\ &= 1 - \frac{2 + 2\cos{\left( \sqrt{x} \right) } - 2\,\mathrm{i}\sin{\left( \sqrt{x} \right) }}{2 + 2\cos{\left( \sqrt{x} \right) }} \\ &= 1 - \left[ 1 - \frac{2\,\mathrm{i}\sin{\left( \sqrt{x} \right) } }{2\,\left[ 1 + \cos{\left( \sqrt{x} \right) } \right] } \right] \\ &= \mathrm{i}\,\left[ \frac{\sin{\left( \sqrt{x} \right) }}{1 + \cos{ \left( \sqrt{x} \right) } } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) } \cos{\left( \frac{\sqrt{x}}{2} \right) }}{1 + 2\cos^2{\left( \frac{\sqrt{x}}{2} \right) } - 1 } \right] \\ &= \mathrm{i}\,\left[ \frac{2\sin{\left( \frac{\sqrt{x}}{2} \right) }\cos{\left( \frac{\sqrt{x}}{2}\right) }}{2\cos^2{\left( \frac{\sqrt{x}}{2} \right) }} \right] \\ &= \mathrm{i}\tan{ \left( \frac{\sqrt{x}}{2} \right) } \end{align*}$
 
  • #4
\(\displaystyle \dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}\)
 
  • #5
Thanks, guys. I appreciate this. :D

greg1313 said:
\(\displaystyle \dfrac{e^{i\sqrt x}-1}{e^{i\sqrt x}+1}=\dfrac{e^{i\sqrt x/2}-e^{-i\sqrt x/2}}{e^{i\sqrt x/2}+e^{-i\sqrt x/2}}=i\dfrac{\sin\dfrac{\sqrt x}{2}}{\cos\dfrac{\sqrt x}{2}}=i\tan\dfrac{\sqrt x}{2}\)
I must remember this one for my exam. Sweet and short!
 

FAQ: What is the ratio of complex numbers in the form of a question?

What is a complex number?

A complex number is a number that can be written in the form of a + bi, where a and b are real numbers and i is the imaginary unit, defined as the square root of -1. The real part, a, is the horizontal axis and the imaginary part, bi, is the vertical axis on the complex plane.

How do you find the ratio of two complex numbers?

The ratio of two complex numbers is found by dividing the first complex number by the second complex number. This is done by multiplying the denominator by its complex conjugate, then simplifying the resulting expression. The resulting complex number is the ratio.

What is the magnitude of a complex number?

The magnitude of a complex number is the distance from the origin to the point representing the complex number on the complex plane. It is found using the Pythagorean theorem, taking the absolute value of the real and imaginary parts as the sides of a right triangle.

How do you simplify a complex number ratio?

To simplify a complex number ratio, you first multiply the denominator by its complex conjugate. Then, you distribute the complex conjugate to both the numerator and denominator and simplify the resulting expression. The resulting complex number is the simplified ratio.

What is the geometric interpretation of the ratio of two complex numbers?

The ratio of two complex numbers can be interpreted as the scaling factor and rotation of the first complex number needed to reach the second complex number on the complex plane. This can be visualized by drawing a line connecting the two complex numbers and observing the angle and length of this line.

Similar threads

Replies
7
Views
2K
Replies
13
Views
2K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
8
Views
2K
Replies
4
Views
1K
Replies
12
Views
2K
Replies
13
Views
2K
Replies
1
Views
1K
Back
Top