- #1
Goklayeh
- 17
- 0
Could someone give me some hint (or some reference) about the study of regularity of weak solutions of
[tex]
(*)\quad
\begin{cases}
-\Delta u = e^u & \text{in }\Omega\\
u = 0 & \text{on }\partial \Omega
\end{cases}
[/tex]
where [itex]\Omega \subset \mathbb{R}^2[/itex] is a bounded domain with smooth boundary (here (as usual), a weak solution of (*) is a function [itex]u \in H^1_0(\Omega)[/itex] which satisfies [itex]\int_{\Omega}{\nabla u \cdot \nabla \varphi\mathrm{d}x} = \int_{\Omega}{e^u \varphi \mathrm{d}x}\:\: \forall \varphi \in H^1_0(\Omega)[/itex]).
Thank you in advance for your time!
[tex]
(*)\quad
\begin{cases}
-\Delta u = e^u & \text{in }\Omega\\
u = 0 & \text{on }\partial \Omega
\end{cases}
[/tex]
where [itex]\Omega \subset \mathbb{R}^2[/itex] is a bounded domain with smooth boundary (here (as usual), a weak solution of (*) is a function [itex]u \in H^1_0(\Omega)[/itex] which satisfies [itex]\int_{\Omega}{\nabla u \cdot \nabla \varphi\mathrm{d}x} = \int_{\Omega}{e^u \varphi \mathrm{d}x}\:\: \forall \varphi \in H^1_0(\Omega)[/itex]).
Thank you in advance for your time!