- #1
normaldistribut
- 6
- 0
Can anyone help explain this to me and solve this problem? I have gone over my textbook and I am having trouble understanding this. (Doh)
Find the domain, range, and when A=B, the diagraph of the relation R.
A={1,2,3,4,8}=B; a R b if and only if a|b.
A.Domain {1,2,3,4,8}
Range {1,4,6,9,15}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
B.Domain {1,2,3,4}
Range {1,4,6,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
C.Domain {1,2,3,4,5}
Range {1,4,6,7,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
D.Domain {1,2,3,4,5}
Range {1,4,6,8,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
Find the domain, range, and when A=B, the diagraph of the relation R.
A={1,2,3,4,8}=B; a R b if and only if a|b.
A.Domain {1,2,3,4,8}
Range {1,4,6,9,15}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
B.Domain {1,2,3,4}
Range {1,4,6,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
C.Domain {1,2,3,4,5}
Range {1,4,6,7,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
D.Domain {1,2,3,4,5}
Range {1,4,6,8,9}
$\begin{bmatrix} 1 & 1 & 1 &1 \\ 0 & 1 & 1 &0 \\ 0 & 0 & 1 &1 \\ 0 & 1 & 0 &0 \\ 0 & 0 & 0 &0 \end{bmatrix}$
Last edited by a moderator: