- #1
Rubidium
- 17
- 0
1. Homework Statement
(a) Show that A[tex]_{0}[/tex]cos([tex]\omega[/tex]t+[tex]\delta[/tex]) can be written as A[tex]_{s}[/tex]sin([tex]\omega[/tex]t)+A[tex]_{c}[/tex]cos([tex]\omega[/tex]t), and determine A[tex]_{s}[/tex] and A[tex]_{c}[/tex] in terms of A[tex]_{0}[/tex] and [tex]\delta[/tex].
(b) Relate A[tex]_{c}[/tex] and A[tex]_{s}[/tex] to the initial position and velocity of a particle undergoing simple harmonic motion.
2. Homework Equations
x=Acos([tex]\omega[/tex]t+[tex]\delta[/tex])
v[tex]_{x}[/tex]=-[tex]\omega[/tex]Asin([tex]\omega[/tex]t+[tex]\delta[/tex])
3. The Attempt at a Solution
I have absolutely no idea where to begin...please help! Thanks a bunch for whoever does!
(a) Show that A[tex]_{0}[/tex]cos([tex]\omega[/tex]t+[tex]\delta[/tex]) can be written as A[tex]_{s}[/tex]sin([tex]\omega[/tex]t)+A[tex]_{c}[/tex]cos([tex]\omega[/tex]t), and determine A[tex]_{s}[/tex] and A[tex]_{c}[/tex] in terms of A[tex]_{0}[/tex] and [tex]\delta[/tex].
(b) Relate A[tex]_{c}[/tex] and A[tex]_{s}[/tex] to the initial position and velocity of a particle undergoing simple harmonic motion.
2. Homework Equations
x=Acos([tex]\omega[/tex]t+[tex]\delta[/tex])
v[tex]_{x}[/tex]=-[tex]\omega[/tex]Asin([tex]\omega[/tex]t+[tex]\delta[/tex])
3. The Attempt at a Solution
I have absolutely no idea where to begin...please help! Thanks a bunch for whoever does!