What is the relationship between force and potential in particle interactions?

In summary, the conversation discusses the confusion about finding force vectors F_12 and F_21 from an interaction potential between two repelling particles. It is clarified that the x-component of F_12 is given by -du/dx and the components for F_21 are the negative of F_12. The interaction potential is a scalar function and the force on particle 1 is found using the gradient of the potential, while the force on particle 2 is the negative of that. Newton's 3rd Law holds due to the potential only depending on the relative vector between the particles.
  • #1
Tim667
12
0
TL;DR Summary
Slight confusion about vectors from a potential
Suppose I have some interaction potential, u(r), between two repelling particles. We will name them particles 1 and 2.

I want to find the force vectors F_12 and F_21. Would I be correct in saying that the x-component of F_12 would be given by -du/dx, y-component -du/dy etc? And to find the components for the other force vector, would this simply be the negative of the first vector?

So F_12 would be given by (-du/dx, -du/dy, -du/dz) and F_21= (du/dx, du/dy, du/dz)?

Thank you
 
Last edited:
Physics news on Phys.org
  • #2
Tim667 said:
Summary: Slight confusion about vectors from a potential

Suppose I have some potential, u(r), between two repelling particles. We will name them particles 1 and 2.

I want to find the force vectors F_12 and F_21. Would I be correct in saying that the x-component of F_12 would be given by -du/dx, y-component -du/dy etc? And to find the components for the other force vector, would this simply be the negative of the first vector?

So F_12 would be given by (-du/dx, -du/dy, -du/dz) and F_21= (du/dx, du/dy, du/dz)?

Thank you
You need to be careful. Normally with a potential you have a particle moving under the influence of an external force. In this case technically you have a different potential for each particle.
 
  • Like
Likes Tim667
  • #3
PeroK said:
You need to be careful. Normally with a potential you have a particle moving under the influence of an external force. In this case technically you have a different potential for each particle.
I see, I should specify that this is an interaction potential between the two particles
 
  • #4
Tim667 said:
I see, I should specify that this is an interaction potential between the two particles
Okay. Of course. As long as you define ##r## the right way round, what you have looks right. I must be getting tired.
 
  • Like
Likes Tim667
  • #5
PeroK said:
Okay. Of course. As long as you define ##r## the right way round, what you have looks right. I must be getting tired.
That's okay. I think I was confused because potentials are usually scalar functions, and I wasn't sure you could get vectors from them
 
  • #6
Tim667 said:
That's okay. I think I was confused because potentials are usually scalar functions, and I wasn't sure you could get vectors from them
Yes, the gradient takes a scalar function of position and generates a vector function of position.
 
  • Like
Likes Tim667
  • #7
An interactian potential usually takes the form ##V(\vec{x}_1-\vec{x}_2)##. The force on particle 1 is
$$\vec{F}_{12}=-\vec{\nabla}_1 V(\vec{x}_1-\vec{x}_2)$$
and on particle 2
$$\vec{F}_{21}=-\vec{\nabla}_2 V(\vec{x}_1-\vec{x}_2)=-\vec{F}_{12}.$$
Newton's 3rd Law holds, because the potential only depends on the relative vector ##\vec{r}=\vec{x}_1-\vec{x}_2##.
 
  • Like
Likes dlgoff, PeroK and Tim667
Back
Top