- #1
Oster
- 85
- 0
I'm trying to do a problem concerning converging sequences in normed linear spaces. Can anyone help me prove that if x=(x1,x2...,xn) is a vector in an n dimensional vector space then |xi| where i=1,2...,n; is always less than or equal to ||x|| (norm of x). Maybe start out by writing x as a sum of n multiples of the basis vectors?
Last edited: