- #1
Math100
- 802
- 221
- Homework Statement
- What is the remainder when the following sum is divided by ## 4 ##?
## 1^{5}+2^{5}+3^{5}+\dotsb +99^{5}+100^{5} ##
- Relevant Equations
- None.
Let ## n ## be an integer.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## n=2k ## for some ## k\in\mathbb{N} ##.
Thus ## n^{5}=(2k)^{5}=32k^{5}\equiv 0 \pmod 4 ##.
Case #2: Suppose ## n ## is odd.
Then ## n=4k+1 ## or ## n=4k+3 ## for some ## k\in\mathbb{N} ##.
Thus ## (4k+1)^{5}+(4k+3)^{5}\equiv 1^{5}+(-1)^{5} \pmod 4\equiv 1+(-1) \pmod 4\equiv 0 \pmod 4 ##.
Note that ## 1^{5}+2^{5}+3^{5}+\dotsb +99^{5}+100^{5}=[(1^{5}+3^{5})+(5^{5}+7^{5})+\dotsb +(97^{5}+99^{5})]+(2^{5}+4^{5}+\dotsb +98^{5}+100^{5})\equiv (0+0) \pmod 4\equiv 0 \pmod 4 ##.
Therefore, the remainder of ## 1^{5}+2^{5}+3^{5}+\dotsb +99^{5}+100^{5} ## when divided by ## 4 ## is ## 0 ##.
Now we consider two cases.
Case #1: Suppose ## n ## is even.
Then ## n=2k ## for some ## k\in\mathbb{N} ##.
Thus ## n^{5}=(2k)^{5}=32k^{5}\equiv 0 \pmod 4 ##.
Case #2: Suppose ## n ## is odd.
Then ## n=4k+1 ## or ## n=4k+3 ## for some ## k\in\mathbb{N} ##.
Thus ## (4k+1)^{5}+(4k+3)^{5}\equiv 1^{5}+(-1)^{5} \pmod 4\equiv 1+(-1) \pmod 4\equiv 0 \pmod 4 ##.
Note that ## 1^{5}+2^{5}+3^{5}+\dotsb +99^{5}+100^{5}=[(1^{5}+3^{5})+(5^{5}+7^{5})+\dotsb +(97^{5}+99^{5})]+(2^{5}+4^{5}+\dotsb +98^{5}+100^{5})\equiv (0+0) \pmod 4\equiv 0 \pmod 4 ##.
Therefore, the remainder of ## 1^{5}+2^{5}+3^{5}+\dotsb +99^{5}+100^{5} ## when divided by ## 4 ## is ## 0 ##.