- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
A sequence of integers ${x_i}$ is defined as follows:
$x_i=i$ for all $1<i<5$ and
$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.
Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.
$x_i=i$ for all $1<i<5$ and
$x_i=(x_1x_2\cdots x_{i-1})-1$ for $i>5$.
Evaluate $\displaystyle x_1x_2\cdots x_{2011}-\sum_{i=1}^{2011} (x_i)^2$.