- #1
Petrus
- 702
- 0
Hello MHB,
calculate \(\displaystyle \left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}\) in the form \(\displaystyle a+ib\)
progress:
I start to calculate argument and get it to \(\displaystyle r=1\) (argument)
then \(\displaystyle \cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}\) we se it's in first quadrant( where x and y is positive)
\(\displaystyle 1*e^{i\frac{100\pi}{3}}\)
notice that we can always take away 2pi so we can simplify that to
\(\displaystyle 1*e^{i\frac{\pi}{3}}\)
\(\displaystyle 1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}\)
but the facit says \(\displaystyle \frac{-1}{2}-i\frac{\sqrt{3}}{2}\)
Regards,
calculate \(\displaystyle \left(\frac{1}{2}+i\frac{\sqrt{3}}{2} \right)^{100}\) in the form \(\displaystyle a+ib\)
progress:
I start to calculate argument and get it to \(\displaystyle r=1\) (argument)
then \(\displaystyle \cos\theta=\frac{1}{2} \ sin\theta=\frac{\sqrt{3}}{2}\) we se it's in first quadrant( where x and y is positive)
\(\displaystyle 1*e^{i\frac{100\pi}{3}}\)
notice that we can always take away 2pi so we can simplify that to
\(\displaystyle 1*e^{i\frac{\pi}{3}}\)
\(\displaystyle 1*e^{i\frac{\pi}{3}}=\cos(\frac{\pi}{3}) + i \sin (\frac{\pi}{3}) = \frac{1}{2}+i\frac{\sqrt{3}}{2}\)
but the facit says \(\displaystyle \frac{-1}{2}-i\frac{\sqrt{3}}{2}\)
Regards,