- #1
Kashmir
- 468
- 74
While trying to find the expectation value of the radial distance ##r## of an electron in hydrogen atom in ground state the expression is :
##\begin{aligned}\langle r\rangle &=\langle n \ell m|r| n \ell m\rangle=\langle 100|r| 100\rangle \\ &=\int r\left|\psi_{n \ell m}(r, \theta, \phi)\right|^{2} d V \end{aligned}##
Since Hilbert space operators act on kets, What operator is ##r## in the expression :
##\begin{aligned}\langle r\rangle &=\langle n \ell m|r| n \ell m\rangle=\langle 100|r| 100\rangle \end{aligned}##
Is it a component of the position operator ##\mathbf x## that is related to the radial distance ?
Does it act on kets as:
##\hat{r}|r \theta \phi\rangle=r|r \theta \phi\rangle##
##\begin{aligned}\langle r\rangle &=\langle n \ell m|r| n \ell m\rangle=\langle 100|r| 100\rangle \\ &=\int r\left|\psi_{n \ell m}(r, \theta, \phi)\right|^{2} d V \end{aligned}##
Since Hilbert space operators act on kets, What operator is ##r## in the expression :
##\begin{aligned}\langle r\rangle &=\langle n \ell m|r| n \ell m\rangle=\langle 100|r| 100\rangle \end{aligned}##
Is it a component of the position operator ##\mathbf x## that is related to the radial distance ?
Does it act on kets as:
##\hat{r}|r \theta \phi\rangle=r|r \theta \phi\rangle##