- #1
mathsss2
- 38
- 0
Let [tex]p[/tex] be a prime, [tex]G[/tex] a finite group, and [tex]P[/tex] a [tex]p[/tex]-Sylow subgroup of [tex]G[/tex]. Let [tex]M[/tex] be any subgroup of [tex]G[/tex] which contains [tex]N_G(P)[/tex]. Prove that [tex][G:M]\equiv 1[/tex] (mod [tex]p[/tex]). (Hint: look carefully at Sylow's Theorems.)