- #1
Orion1
- 973
- 3
Because Trigonometry is a pre-requisite for Calculus, the purpose of this procedure is for use in 'calculator banned' Calculus courses, to eliminate the requirement of memorizing sixteen 'special angles' in Trigonometry to derive the correct solution.
Memorizing this procedure can produce all the correct solutions with knowledge of only the signs of four quadrants and three special angles in quadrant I.
This is the procedure that I developed in the 'rough', and I have not thoroughly tested it. Please let me know if there is a better 'symbolic' way to write this procedure or if this procedure produces any errors.
[tex]f_t( \theta_1 ) = \sin \theta_1, \cos \theta_1, \tan \theta_1 \; \text{etc.}[/tex]
[tex]\theta_1 = \frac{n a}{b}[/tex]
[tex]\theta_2 = \frac{\theta_1}{n} = \frac{a}{b}[/tex]
[tex]\text{if} \; \theta_1 = \pi \; \text{then} \; \theta_2 = 0[/tex]
[tex]f_q(\theta_1) = \text{sgn} [f_t (\theta_1)][/tex]
[tex]f_1(\theta_1) = f_q(\theta_1) \cdot f_t(\theta_2)[/tex]
[tex]f_1(\theta_1) = \text{sgn} [f_t (\theta_1)] \cdot f_t(\theta_2)[/tex]
[tex]\text{example:}[/tex]
[tex]f_t( \theta_1 ) = \cos \frac{2 \pi}{3} [/tex]
[tex]\theta_1 = \frac{2 \pi}{3} \; \; \; n = 2 \; \; \; a = \pi \; \; \; b = 3[/tex]
[tex]\theta_2 = \frac{a}{b} = \frac{\pi}{3}[/tex]
[tex]f_q \left( \frac{2 \pi}{3} \right) = \text{sgn} \left[ \cos \frac{2 \pi}{3} \right] = -1[/tex]
[tex]f_1( \theta_1 ) = \cos \frac{2 \pi}{3} = \text{sgn} \left[ \cos \frac{2 \pi}{3} \right] \cdot \cos \frac{\pi}{3}[/tex]
[tex]\cos \frac{2 \pi}{3} = - \cos \frac{\pi}{3} = - \frac{1}{2}[/tex]
[tex]\boxed{\cos \frac{2 \pi}{3} = - \frac{1}{2}}[/tex]
Last edited: