- #1
evinda
Gold Member
MHB
- 3,836
- 0
Hello! (Wave)
I want to find the solution of the problem
$$(t+u(x,t))u_x(x,t)+tu_t(x,t)=x-t, x \in \mathbb{R}, t>1,$$
$$u(x,1)=1+x$$
using the method of characteristics.
That's what I have tried:
$$(x(0),t(0))=(x_0,1)$$We are looking for a curve $(x(s),y(s)), s \in \mathbb{R}$ such that $\sigma(s)=u(x(s),t(s))$
$$\sigma'(s)=u_x(x(s),t(s))x'(s)+u_t(x(s),t(s))t'(s)$$
We choose $x'(s)=t+u(x,t)=t+ \sigma(s), s \in \mathbb{R}, x(0)=x_0\\t'(s)=t(s), s \in \mathbb{R}, t(0)=1$
Then $\sigma'(s)=x(s)-t(s), s \in \mathbb{R}\\ \sigma(0)=u(x(0),t(0))=u(x_0,1)=1+x_0$$$t'(s)=t(s) \Rightarrow \frac{dt}{ds}t \Rightarrow \frac{dt}{t}=ds \Rightarrow \ln{|t|}=s+c \Rightarrow t=C e^s$$
$$t(0)=1 \Rightarrow C=1$$
$$\Rightarrow t(s)=e^s$$
$x'(s)=t+ \sigma(s)=e^s+u(x(s),e^s) \Rightarrow x(s)=e^s-1+ \int_0^{s} u(x(\xi), e^{\xi})d \xi$
$\sigma'(s)=e^s-1+ \int_0^{s} u(x(\xi), e^{\xi})d \xi-e^s=\int_0^{s} u(x(\xi), e^{\xi})d \xi-1=\int_0^{s} \sigma(\xi) d\xi-1 $
From the Mean Value theorem, we have that there is a $k \in (0,s)$ such that $\sigma(k)=\frac{\int_0^s \sigma(\xi)d\xi}{s}$
So we have that $\sigma'(s)=s \sigma(k)-1 \Rightarrow \sigma(s)=\frac{s^2}{2} \sigma(k)-s+c$
I want to find the solution of the problem
$$(t+u(x,t))u_x(x,t)+tu_t(x,t)=x-t, x \in \mathbb{R}, t>1,$$
$$u(x,1)=1+x$$
using the method of characteristics.
That's what I have tried:
$$(x(0),t(0))=(x_0,1)$$We are looking for a curve $(x(s),y(s)), s \in \mathbb{R}$ such that $\sigma(s)=u(x(s),t(s))$
$$\sigma'(s)=u_x(x(s),t(s))x'(s)+u_t(x(s),t(s))t'(s)$$
We choose $x'(s)=t+u(x,t)=t+ \sigma(s), s \in \mathbb{R}, x(0)=x_0\\t'(s)=t(s), s \in \mathbb{R}, t(0)=1$
Then $\sigma'(s)=x(s)-t(s), s \in \mathbb{R}\\ \sigma(0)=u(x(0),t(0))=u(x_0,1)=1+x_0$$$t'(s)=t(s) \Rightarrow \frac{dt}{ds}t \Rightarrow \frac{dt}{t}=ds \Rightarrow \ln{|t|}=s+c \Rightarrow t=C e^s$$
$$t(0)=1 \Rightarrow C=1$$
$$\Rightarrow t(s)=e^s$$
$x'(s)=t+ \sigma(s)=e^s+u(x(s),e^s) \Rightarrow x(s)=e^s-1+ \int_0^{s} u(x(\xi), e^{\xi})d \xi$
$\sigma'(s)=e^s-1+ \int_0^{s} u(x(\xi), e^{\xi})d \xi-e^s=\int_0^{s} u(x(\xi), e^{\xi})d \xi-1=\int_0^{s} \sigma(\xi) d\xi-1 $
From the Mean Value theorem, we have that there is a $k \in (0,s)$ such that $\sigma(k)=\frac{\int_0^s \sigma(\xi)d\xi}{s}$
So we have that $\sigma'(s)=s \sigma(k)-1 \Rightarrow \sigma(s)=\frac{s^2}{2} \sigma(k)-s+c$