- #1
bluestar
- 80
- 0
I am working with the following harmonic oscillator formula.
[tex]
\psi_n \left( y \right) = \left( \frac {\alpha}{{\pi}} \right) ^ \frac{1}{{4}} \frac{1}{{\sqrt{2^nn!}}}H_n\left(y\right)e^{\frac{-y^2}{{2}}}
[/tex]
Where
[tex]
y = \sqrt{\alpha} x
[/tex]
And
[tex]
\alpha = \frac{m\omega}{{\hbar}}
[/tex]
I can not find a non-circular definition for [tex]\omega[/tex] or k.
For a quantum harmonic oscillator the only definitions for [tex]\omega[/tex] and k that I have found are
[tex]
\omega = \sqrt\frac{k}{{mass}}
[/tex]
[tex]
k = mass*\omega^2
[/tex]
which are circular.
Does anybody have a different definition for [tex]\omega[/tex] or k that works in the above quantum harmonic oscillator?
[tex]
\psi_n \left( y \right) = \left( \frac {\alpha}{{\pi}} \right) ^ \frac{1}{{4}} \frac{1}{{\sqrt{2^nn!}}}H_n\left(y\right)e^{\frac{-y^2}{{2}}}
[/tex]
Where
[tex]
y = \sqrt{\alpha} x
[/tex]
And
[tex]
\alpha = \frac{m\omega}{{\hbar}}
[/tex]
I can not find a non-circular definition for [tex]\omega[/tex] or k.
For a quantum harmonic oscillator the only definitions for [tex]\omega[/tex] and k that I have found are
[tex]
\omega = \sqrt\frac{k}{{mass}}
[/tex]
[tex]
k = mass*\omega^2
[/tex]
which are circular.
Does anybody have a different definition for [tex]\omega[/tex] or k that works in the above quantum harmonic oscillator?