- #1
Euge
Gold Member
MHB
POTW Director
- 2,073
- 243
Here is this week's POTW:
-----
Let $G$ be a compact Lie group, and let $V$ be a finite-dimensional representation of $G$. Prove that if $\chi$ is the character associated with $V$, then $\int_G \chi(g)\, dg = \operatorname{dim}(V^G)$ where $V^G\subset V$ is the subspace of $G$-invariants of $V$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Let $G$ be a compact Lie group, and let $V$ be a finite-dimensional representation of $G$. Prove that if $\chi$ is the character associated with $V$, then $\int_G \chi(g)\, dg = \operatorname{dim}(V^G)$ where $V^G\subset V$ is the subspace of $G$-invariants of $V$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!