What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

In summary, to evaluate a complex sum, you can break it down into smaller parts and use mathematical rules and operations such as addition, subtraction, multiplication, and division. Common strategies for evaluating complex sums include breaking them down, using mathematical rules and operations, and using algebraic manipulation. Challenges in evaluating complex sums include identifying the correct operations and keeping track of calculations. To check correctness, you can plug the solution back into the original sum or use a calculator or software program. It is not possible to evaluate complex sums without using mathematical rules and operations, but other methods such as graphing calculators or software programs can assist in the process.
  • #1
anemone
Gold Member
MHB
POTW Director
3,883
115
Evaluate \(\displaystyle \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}\).
 
Mathematics news on Phys.org
  • #2
anemone said:
Evaluate \(\displaystyle \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}\).

My solution:

Let's write the sum as:

\(\displaystyle S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)\)

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

\(\displaystyle S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)\)

Let's now look at the 3 sums on the right in turn:

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\)

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\)

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\)

And so, we may now state the partial sum as:

\(\displaystyle S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}\)

And so the infinite sum is:

\(\displaystyle S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}\)
 
  • #3
MarkFL said:
My solution:

Let's write the sum as:

\(\displaystyle S_n=\sum_{k=2}^{n}\left(\frac{3k^2+1}{\left(k^3-k\right)^3}\right)\)

Performing a partial fraction decomposition on the summand, and using the properties of sums, we obtain:

\(\displaystyle S_n=\frac{1}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)+\frac{3}{2}\sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)+3\sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)\)

Let's now look at the 3 sums on the right in turn:

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{(k+1)^3}-\frac{2}{k^3}+\frac{1}{(k-1)^3}\right)=1+\frac{1}{8}-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^3}-\frac{2}{k^3}+\frac{1}{k^3}\right)+\frac{1}{(n+1)^3}+\frac{1}{n^3}-\frac{2}{n^3}=\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\)

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{(k+1)^2}-\frac{1}{(k-1)^2}\right)=-1-\frac{1}{4}+\sum_{k=4}^{n-2}\left(\frac{1}{k^2}-\frac{1}{k^2}\right)+\frac{1}{(n+1)^2}+\frac{1}{n^2}=-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\)

\(\displaystyle \sum_{k=2}^{n}\left(\frac{1}{k+1}-\frac{2}{k}+\frac{1}{k-1}\right)=1+\frac{1}{2}-\frac{2}{2}+\sum_{k=4}^{n-2}\left(\frac{1}{k}-\frac{2}{k}+\frac{1}{k}\right)+\frac{1}{n+1}+\frac{1}{n}-\frac{2}{n}=\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\)

And so, we may now state the partial sum as:

\(\displaystyle S_n=\frac{1}{2}\left(\frac{7}{8}+\frac{1}{(n+1)^3}-\frac{1}{n^3}\right)+\frac{3}{2}\left(-\frac{5}{4}+\frac{1}{(n+1)^2}+\frac{1}{n^2}\right)+3\left(\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n}\right)=\frac{(n(n+1))^3-8}{16(n(n+1))^3}\)

And so the infinite sum is:

\(\displaystyle S_{\infty}=\lim_{n\to\infty}\left(S_n\right)=\frac{1}{16}\)

Awesome, MarkFL!(Cool)
 
  • #4
Solution of other:
Note that $2(3n^2+1)=(n+1)^3-(n-1)^3$, so the sum becomes

\(\displaystyle \begin{align*}\sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}&=\frac{1}{2}\sum_{n>1} \frac{(n+1)^3-(n-1)^3}{n^3(n+1)^3(n-1)^3}\\&=\frac{1}{2}\left(\sum_{n>1} \frac{1}{n^3(n-1)^3}-\sum_{n>1} \frac{1}{n^3(n+1)^3}\right)\\&=\frac{1}{2}\left(\frac{1}{2^3(2-1)^3}\right)\\&=\frac{1}{16}\end{align*}\)
 

FAQ: What is the Solution to the Complex Sum \sum_{n>1} \frac{3n^2+1}{(n^3-n)^3}?

How do you evaluate a complex sum?

To evaluate a complex sum, you need to break it down into smaller parts and simplify them individually. You can also use mathematical rules and operations such as addition, subtraction, multiplication, and division to solve the complex sum.

What are some common strategies for evaluating complex sums?

Some common strategies for evaluating complex sums include breaking them down into simpler parts, using mathematical rules and operations, and using algebraic manipulation to simplify the sum.

What are some challenges in evaluating complex sums?

One of the main challenges in evaluating complex sums is identifying the correct mathematical operations and rules to use. Another challenge is keeping track of all the steps and calculations involved in simplifying the sum.

How do you know if your solution to a complex sum is correct?

You can check the correctness of your solution by plugging it back into the original complex sum and seeing if it results in the same value. Another way is to use a calculator or software program to verify the solution.

Can complex sums be evaluated without using mathematical rules and operations?

No, mathematical rules and operations are necessary for evaluating complex sums. However, there are other methods such as using graphing calculators or software programs that can assist in solving complex sums without manually applying mathematical rules and operations.

Similar threads

Replies
2
Views
1K
Replies
8
Views
2K
Replies
1
Views
900
Replies
2
Views
1K
Replies
1
Views
1K
Replies
7
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
Back
Top