- #1
shamieh
- 539
- 0
Evaluate the following integrals.
a) $\int^1_0 x e^x dx$
So integrating by parts we get
$u = x $ $vu = e^x dx$
$du = dx$ $ v = e^x$
$uv - \int vdu = x e^x - \int^1_0 e^x dx$
\(\displaystyle xe^x - e^x |^1_0 = 1\)
b) \(\displaystyle \int^1_0 x^2 e^x \, dx\)
Integrating by parts we get
\(\displaystyle u = x^2 \) \(\displaystyle dv = e^x dx\)
\(\displaystyle du = 2xdx\) \(\displaystyle v = e^x\)
\(\displaystyle uv - \int vdu = x^2 e^x - \int^1_0 e^x 2x = e^1 - 2 \)
a) $\int^1_0 x e^x dx$
So integrating by parts we get
$u = x $ $vu = e^x dx$
$du = dx$ $ v = e^x$
$uv - \int vdu = x e^x - \int^1_0 e^x dx$
\(\displaystyle xe^x - e^x |^1_0 = 1\)
b) \(\displaystyle \int^1_0 x^2 e^x \, dx\)
Integrating by parts we get
\(\displaystyle u = x^2 \) \(\displaystyle dv = e^x dx\)
\(\displaystyle du = 2xdx\) \(\displaystyle v = e^x\)
\(\displaystyle uv - \int vdu = x^2 e^x - \int^1_0 e^x 2x = e^1 - 2 \)
Last edited: