- #1
Nono713
Gold Member
MHB
- 618
- 4
Let $S$ be a nonempty set of natural numbers, equipped with the following membership rules:
$$\text{if} ~ ~ x \in S ~ ~ \text{then} ~ ~ 4x \in S \tag{1}$$
$$\text{if} ~ ~ x \in S ~ ~ \text{then} ~ ~ \lfloor \sqrt{x} \rfloor \in S \tag{2}$$
Show that $S = \mathbb{N}$, and find all the natural numbers $k$ for which this still holds if rule $(1)$ becomes $x \in S \implies kx \in S$ (i.e. substituting $k$ instead of $4$).
$$\text{if} ~ ~ x \in S ~ ~ \text{then} ~ ~ 4x \in S \tag{1}$$
$$\text{if} ~ ~ x \in S ~ ~ \text{then} ~ ~ \lfloor \sqrt{x} \rfloor \in S \tag{2}$$
Show that $S = \mathbb{N}$, and find all the natural numbers $k$ for which this still holds if rule $(1)$ becomes $x \in S \implies kx \in S$ (i.e. substituting $k$ instead of $4$).
Last edited: