- #1
dobedobedo
- 28
- 0
To increase the temperature of a vessel with 1 K the amount of 50 J energy must be supplied. In the vessel 250 g of a liquid is added. With a heating spiral, which develops 15 W, the temperature is increased. Eventually it is stabilized and becomes constant until the heat supply gets turned off. Then the temperature decreases in the beginning with 1.2 K per minute. Calculate the specific heat capacity of the liquid.
How do I solve this rather basic problem? According to the textbook the answer should be 2.8 kJ/(kg*K)
Should I take into consideration that the vessel itself is heated, even though it's specific heat capacity and mass are unknown? I don't understand what facts I should ignore, and what facts I should take into consideration. All I know is that E = cmΔT and that heat is transferred from hot to cold. My attempt to a solution is that the supplied energy per second should be equal to the energy lost when the liquid is cooled. Out of this assumption I calculated a heat capacity of 3.0 kJ/(kg*K), which is rather close but still not correct.
Please help this lost soul.
)':
How do I solve this rather basic problem? According to the textbook the answer should be 2.8 kJ/(kg*K)
Should I take into consideration that the vessel itself is heated, even though it's specific heat capacity and mass are unknown? I don't understand what facts I should ignore, and what facts I should take into consideration. All I know is that E = cmΔT and that heat is transferred from hot to cold. My attempt to a solution is that the supplied energy per second should be equal to the energy lost when the liquid is cooled. Out of this assumption I calculated a heat capacity of 3.0 kJ/(kg*K), which is rather close but still not correct.
Please help this lost soul.
)':