- #36
PeterDonis
Mentor
- 47,480
- 23,760
Mentz114 said:the scalar curvature is positive ##\frac{{L}^{2}}{2\,{r}^{2}}## but ##\frac{1}{8 \pi} \hat{G}_{ab} u^a u^b=\frac{1}{8 \pi} \hat{G}_{00} < 0##
I'm not sure that's true. The result I get from Maxima (assuming that I posted the metric correctly before and that ##L## is a constant) for ##G_{00}## is (giving it just as Maxima gives it)
$$
- \frac{L^2 \left( L^2 - 1 \right)}{4r^2} - \frac{\left( L - 1 \right) L \left( 1 + L \right)}{2r^2}
$$
On its face this looks negative, but it's not. Consider: for a worldline stationary in this metric (i.e., all coordinates except ##t## constant) to be timelike (so it can be the worldline of an observer), we must have ##g_{00} < 0## (since the way the metric is written makes it evident that the ##-+++## signature convention is being used). That means (assuming there is no sign error in the ##dt^2## term as I posted it) ##L^2 - 1 < 0##, or ##1 - L^2 > 0##. So we can rewrite the above in a form that makes it manifestly positive:
$$
\frac{L^2 \left( 1 - L^2 \right)}{4r^2} + \frac{\left( 1 - L \right) L \left( 1 + L \right)}{2r^2} = \left( 1 - L^2 \right) \left( \frac{L^2}{4r^2} + \frac{L}{2r^2} \right)
$$
The actually measured energy density is the same as this except that the ##1 - L^2## factor is gone (it's canceled by the two factors of ##u^0##).