- #1
complexnumber
- 62
- 0
Homework Statement
Let [tex](X,\tau)[/tex] be [tex]X = \mathbb{R}[/tex] equipped with the topology
generated by [tex]\EuScript{E} := \{[a,\infty) | a \in \mathbb{R} \}[/tex].
Show that [tex]\tau = \{ \varnothing, \mathbb{R} \} \cup \{
[a,\infty), (a, \infty) | a \in \mathbb{R} \}[/tex]
Homework Equations
A topology generated by [tex]\EuScript{E}[/tex] is [tex]\tau(\EuScript{E}) = \bigcap \{ \tau \subset \mathcal{P}(X) | \tau \text{ is a topology } \wedge \tau \supset \EuScript{E} \}[/tex]
The Attempt at a Solution
I can see that [tex]\tau = \{ \varnothing, \mathbb{R} \} \cup \{
[a,\infty), (a, \infty) | a \in \mathbb{R} \}[/tex] is a topology for [tex]X[/tex]. But I don't know why the generated topology contains [tex](a,\infty)[/tex] as well. How is this obtained? How should I prove that [tex]\tau = \{ \varnothing, \mathbb{R} \} \cup \{
[a,\infty), (a, \infty) | a \in \mathbb{R} \}[/tex] is the intersection of all topologies containing [tex]\EuScript{E}[/tex]?