- #1
Monoxdifly
MHB
- 284
- 0
Suppose the angles in triangle ABC is A, B, and C. If sin A + sin B = 2 sin C, the value of \(\displaystyle 2tan\frac12Atan\frac12B\) is ...
A. \(\displaystyle \frac83\)
B. \(\displaystyle \sqrt6\)
C. \(\displaystyle \frac73\)
D. \(\displaystyle \frac23\)
E. \(\displaystyle \frac13\sqrt3\)
Since A, B, and C are the angles of triangle ABC, then C = 180° – (A + B)
sin A + sin B = 2 sin C
sin A + sin B = 2 sin(180° – (A + B))
sin A + sin B = 2 sin(A + B)
2 = \(\displaystyle \frac{sinA+sinB}{sin(A+B)}\)
\(\displaystyle 2tan\frac12Atan\frac12B\)
\(\displaystyle \frac{sinA+sinB}{sin(A+B)}×tan\frac12Atan\frac12B\)
What am I supposed to do after this?
A. \(\displaystyle \frac83\)
B. \(\displaystyle \sqrt6\)
C. \(\displaystyle \frac73\)
D. \(\displaystyle \frac23\)
E. \(\displaystyle \frac13\sqrt3\)
Since A, B, and C are the angles of triangle ABC, then C = 180° – (A + B)
sin A + sin B = 2 sin C
sin A + sin B = 2 sin(180° – (A + B))
sin A + sin B = 2 sin(A + B)
2 = \(\displaystyle \frac{sinA+sinB}{sin(A+B)}\)
\(\displaystyle 2tan\frac12Atan\frac12B\)
\(\displaystyle \frac{sinA+sinB}{sin(A+B)}×tan\frac12Atan\frac12B\)
What am I supposed to do after this?