- #1
anemone
Gold Member
MHB
POTW Director
- 3,883
- 115
Here is this week's POTW:
-----
Assume that $\alpha,\, \beta,\,\gamma$ satisfy $0<\alpha<\beta<\gamma<2\pi$.
If $\cos (x+\alpha)+\cos(x+\beta)+\cos(x+\gamma)=0$ for arbitrary $x\in \Bbb{R}$, evaluate $\gamma-\alpha$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
-----
Assume that $\alpha,\, \beta,\,\gamma$ satisfy $0<\alpha<\beta<\gamma<2\pi$.
If $\cos (x+\alpha)+\cos(x+\beta)+\cos(x+\gamma)=0$ for arbitrary $x\in \Bbb{R}$, evaluate $\gamma-\alpha$.
-----
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!