- #1
bugatti79
- 794
- 1
Homework Statement
Convert the following to an equivalent cotour integral around |z|=1 then use Cauchy's integral formula to evaluate it.
##\int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}##
Homework Equations
let ##z=e^{i \theta}##
The Attempt at a Solution
##d \theta = \frac{dz}{i z}##
##\displaystyle \int_{0}^{2 \pi} \frac {d \theta}{13+5 \sin \theta}=\int_{|z|=1} \frac {dz/iz}{13+5/2i(e^{i \theta} -e^{-i \theta})}\frac{2iz}{2iz}##
##\displaystyle =\int_{|z|=1} \frac {2dz}{26iz+5z^2-5}##
where the denominator has the roots ##i(2.6 \pm 2.4)## using quadratic formula...so far ok?