- #1
karush
Gold Member
MHB
- 3,269
- 5
$\tiny{4.2.5}$
$\displaystyle\int^1_0{xe^x\ dx}$
is equal to
$A.\ \ {1}\quad B. \ \ {-1}\quad C. \ \ {2-e}\quad D.\ \ {\dfrac{e^2}{2}}\quad E.\ \ {e-1}$
ok I think this is ok possible typos
but curious if this could be solve not using IBP since the only variable is x
$\displaystyle\int^1_0{xe^x\ dx}$
is equal to
$A.\ \ {1}\quad B. \ \ {-1}\quad C. \ \ {2-e}\quad D.\ \ {\dfrac{e^2}{2}}\quad E.\ \ {e-1}$
$\begin{array}{lll}
\textit{IBP}
&uv-\displaystyle\int v' dv
&\tiny{(1)}\\ \\
\textit{substitution}
&u=x,\ v'=e^x
&\tiny{(2)}\\ \\
\textit{calculate}
&I=xe^x-\displaystyle\int \ e^xdx\biggr|^1_0
=xe^x-e^x\biggr|^1_0=1
&\tiny{(3)}
\end{array}$
\textit{IBP}
&uv-\displaystyle\int v' dv
&\tiny{(1)}\\ \\
\textit{substitution}
&u=x,\ v'=e^x
&\tiny{(2)}\\ \\
\textit{calculate}
&I=xe^x-\displaystyle\int \ e^xdx\biggr|^1_0
=xe^x-e^x\biggr|^1_0=1
&\tiny{(3)}
\end{array}$
ok I think this is ok possible typos
but curious if this could be solve not using IBP since the only variable is x