- #1
Saitama
- 4,243
- 93
Problem:
If $z$ is a complex number such that
$$\arg(z(1+\overline{z}))+\arg\left(\frac{|z|^2}{z-|z|^2}\right)=0$$
then
A)$\arg(\overline{z})=-\pi/2$
B)$\arg(z)=\pi/4$
C)$|\overline{z}|<1$
D)$\ln\left(\frac{1}{|z|}\right)\in (-\infty,\infty)$
Attempt:
From the fact that $|z|=z\overline{z}$, I simplified the given equation to the following:
$$\arg\left(\frac{1+\overline{z}}{1-\overline{z}}\right)=0$$
If the argument of a complex number is zero, then it is equal to its conjugate, hence
$$\frac{1+\overline{z}}{1-\overline{z}}=\frac{1+z}{1-z}$$
Solving gives me $z=\overline{z}$. What to do with this?
Any help is appreciated. Thanks!
If $z$ is a complex number such that
$$\arg(z(1+\overline{z}))+\arg\left(\frac{|z|^2}{z-|z|^2}\right)=0$$
then
A)$\arg(\overline{z})=-\pi/2$
B)$\arg(z)=\pi/4$
C)$|\overline{z}|<1$
D)$\ln\left(\frac{1}{|z|}\right)\in (-\infty,\infty)$
Attempt:
From the fact that $|z|=z\overline{z}$, I simplified the given equation to the following:
$$\arg\left(\frac{1+\overline{z}}{1-\overline{z}}\right)=0$$
If the argument of a complex number is zero, then it is equal to its conjugate, hence
$$\frac{1+\overline{z}}{1-\overline{z}}=\frac{1+z}{1-z}$$
Solving gives me $z=\overline{z}$. What to do with this?
Any help is appreciated. Thanks!