What mistake am I making when calculating work done by a force?

  • #1
songoku
2,430
364
Homework Statement
Draw the graph of ##F=-2x## and calculate the work done from ##[-1,1]##
Relevant Equations
Work = area under the graph
The answer key is zero because the areas are above and below x-axis and have equal magnitude so canceling out each other.

But I am confused about the solution
1645842548574.png


Area 1 is above x-axis but I think the work done is negative since the sign of ##F## and ##x## is opposite. Work done on area 2 is also negative for the same reasoning so my answer would be -2 J

Where is my mistake? Thanks
 
Physics news on Phys.org
  • #2
songoku said:
Homework Statement:: Draw the graph of ##F=-2x## and calculate the work done from ##[-1,1]##
Relevant Equations:: Work = area under the graph

The answer key is zero because the areas are above and below x-axis and have equal magnitude so canceling out each other.

But I am confused about the solution
View attachment 297599

Area 1 is above x-axis but I think the work done is negative since the sign of ##F## and ##x## is opposite. Work done on area 2 is also negative for the same reasoning so my answer would be -2 J

Where is my mistake? Thanks
Ask yourself, "What is the definition of Work?"
 
  • Like
Likes songoku
  • #3
SammyS said:
Ask yourself, "What is the definition of Work?"
Work is the product of displacement and force which is parallel to the displacement

So based on that definition, I think when the force is positive and displacement is negative, the work done will be negative.

Thanks
 
  • #4
songoku said:
Work is the product of displacement and force which is parallel to the displacement

So based on that definition, I think when the force is positive and displacement is negative, the work done will be negative.

Thanks
Right. Looks like you've got it.

So, in going from ##x=-1## to ##x=0##, for instance, the displacement is positive, even though ##x## is negative.
 
  • Like
Likes songoku
  • #5
For a non constant force the work in going from1 to 2 is $$work=\int _1^2 F(x) \,
dx$$ The increment dx is positive in the +x direction. So the net result result
$$work=\int _{x=-1}^{x=+1} F(x) \,
dx=0$$
is zero
 
  • Like
Likes vanhees71 and songoku
  • #6
SammyS said:
Right. Looks like you've got it.

So, in going from ##x=-1## to ##x=0##, for instance, the displacement is positive, even though ##x## is negative.
Ah I see, so one work is indeed positive (area 1) and the other one is negative (area 2) so the total is zero.

Thank you very much SammyS and hutchphd
 
  • #7
Put simply: Displacement is the change in x, not x itself.
 
  • Like
Likes vanhees71 and songoku

Similar threads

Replies
11
Views
2K
Replies
2
Views
455
Replies
8
Views
478
Replies
3
Views
394
Replies
4
Views
3K
Replies
2
Views
453
Replies
12
Views
3K
Back
Top